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Abstract. The pinwheel problem is a real-time scheduling problem that asks, given n tasks with periods
ai ∈ N, whether it is possible to infinitely schedule the tasks, one per time unit, such that every task i is scheduled
in every interval of ai units. We study a corresponding version of this packing problem in the covering setting,
stylized as the discretized point patrolling problem in the literature. Specifically, given n tasks with periods ai,
the problem asks whether it is possible to assign each day to a task such that every task i is scheduled at most
once every ai days. The density of an instance in either case is defined as the sum of the inverses of task periods.
Recently, the long-standing 5/6 density bound conjecture in the packing setting was resolved affirmatively. The
resolution means any instance with density at least 5/6 is schedulable. A corresponding conjecture was made in
the covering setting and renewed multiple times in more recent work. We resolve this conjecture affirmatively by
proving that every discretized point patrolling instance with density at least

∑∞
i=0 1/(2

i+1) ≈ 1.264 is schedulable.
This significantly improves upon the current best-known density bound of 1.546 and is, in fact, optimal. We also
study the bamboo garden trimming problem, an optimization variant of the pinwheel problem. Specifically, given
n growth rates with values hi ∈ N, the objective is to minimize the maximum height of a bamboo garden with
the corresponding growth rates, where we are allowed to trim one bamboo tree to height zero per time step.
We achieve an efficient 9/7-approximation algorithm for this problem, improving on the current best known
approximation factor of 4/3.

1 Introduction. Scheduling problems are a broad class of problems in computer science that involve
assigning jobs to machines with specific time constraints. Applications range from industrial optimization to the
entertainment industry to the functioning operating systems [1].

The pinwheel problem is a well-studied periodic scheduling problem in which there is a single machine and
a finite number of jobs that reappear immediately after being processed. For example, a vending machine may
need to be restocked at least once every week, with the maintenance deadline depending on the last time it
was restocked. Formalizing this, a pinwheel scheduling instance is a list of integers (a1, a2, a3, · · · , an). The
pinwheel decision problem asks whether a pinwheel scheduling instance has a valid schedule, in particular, a map
f : N → [n] corresponding to an assignment of days to jobs 1 through n such that for all i ∈ [n], every sequence
of ai consecutive days has job i assigned at least once.

The discretized point patrolling problem asks, for an instance (a1, a2, a3, . . . , an), whether a valid schedule
exists, in particular, a map f : N → [n] corresponding to an assignment of days to jobs such that for all i ∈ [n],
every sequence of ai consecutive days has job i assigned at most once. We also refer to this as the pinwheel covering
problem, distinguishing it from the “traditional” pinwheel problem by qualifying the latter as the pinwheel packing
problem for the remainder of this paper.

Consider the fraction of all the days each job takes up for a pinwheel packing instance. It is at least 1
ai

for
job i. We can formulate a notion of density of an instance as the sum of these fractions (i.e.,

∑n
i=1

1
ai

), and we
can clearly see that if the density is greater than 1, no valid pinwheel schedule exists. However, density being less
than or equal to 1 is not sufficient for schedulability. For example, the instance (2, 3, 6) has density 1

2 +
1
3 +

1
6 = 1

but there is no valid schedule. Intuitively, the tasks with periods two and the three take up all the spaces, leaving
no room for the task with period six. This example can be generalized.

Fact 1. (2, 3, a3) is not schedulable for any a3 ∈ N [14].

Fact 1 is proven in Appendix A.1, and applying the fact, we know that for all i ∈ N, there exists a pinwheel
scheduling instance that is not schedulable with density 1

2 + 1
3 + 1

i = 5
6 + 1

i .
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For pinwheel covering, we again define D(A) =
∑

ai∈A
1
ai

, where now if the density is less than 1, an instance
cannot be schedulable. There is a corresponding version of Fact 1 in the covering setting.

Fact 2. (2, 3, 5, 9, · · · , 2k + 1) is not schedulable for any k ∈ N (Theorem 17 of [16]).

Fact 2 is proven in subsection A.2, and applying the fact, we know that for all i ∈ N, there exists a pinwheel
covering instance that is not schedulable with density

k∑
n=0

1

2n + 1
=

∞∑
n=0

1

2n + 1
−

∞∑
n=k+1

1

2n + 1
≥ −

∞∑
n=k+1

1

2n
+

∞∑
n=0

1

2n + 1
= − 1

2k
+

∞∑
n=0

1

2n + 1

Bamboo Garden Trimming (BGT) is a closely related optimization version of the pinwheel problem introduced
by Gąsieniec [9]. Specifically, we have a grove of n bamboo plants, with growth rates ai ∈ N (per day). We are
allowed to trim one plant per day to height zero, and the objective value is the tallest plant in the grove across all
time. A schedule achieves an objective of H if and only if it is a valid schedule for the pinwheel packing instance
(⌊H/ai⌋)i∈[n] [14].

In this paper, the phrase “density bound” refers to a density threshold that provides a schedulability guarantee.
For the packing setting, a density bound of dp implies that every instance with density at most dp is schedulable.
In the covering setting, a density bound of dc implies that every instance with density at least dc is schedulable.

1.1 Related Work. Fact 1 shows that a density bound of 5
6 for the pinwheel packing problem would be

optimal, and this was conjectured to be possible. There was significant work towards this goal, with bounds of 1
2

[13], 2
3 [4], 7

10 [3], and 3
4 [7]. Finally, Kawamura [14] proved the conjectured 5

6 bound. One particularly relevant
technique used in the 5

6 proof is the concept of a fold operation, which enables us to reduce the problem to a finite
number of instances and delegate the analysis to a computer [10]. We repurpose the folding idea (Algorithm 1)
to the covering setting and use the same folding operation of Kawamura [14] for bamboo garden trimming.

Algorithm 1: Fold Operation pfoldθ(A).
1 Input: Pinwheel instance A = (a1, a2, . . . , an)
2 while max(A) > θ do
3 Let a and b be the largest and second largest values in A, allowing for repetition.
4 if b > θ then
5 A← A⊖ (a, b)
6 A← A ⊔ (b/2)

7 else
8 A← A⊖ (a)
9 A← A ⊔ (θ)

10 return A

Note that we have used A ⊔ (a) as the notation for adding a job of period a to the instance A, and A ⊖ (a)
for removing a job of period a (with multiple periods in parenthesis indicating multiple additions or removals).
The usefulness of Algorithm 1 relates to two properties of pinwheel packing instances, which can be used to show
that pfoldθ preserves instance unschedulability.

Lemma 1.1. If A ⊔ (a) is schedulable, then A ⊔ (b) is schedulable for any b ≥ a (Lemma 3 of [14]).

Lemma 1.2. If A ⊔ (a) is schedulable, then A ⊔ (a · q, a · q, . . . , a · q︸ ︷︷ ︸
q

) is schedulable (Lemma 3 of [14]).

Lemma 1.3. For all pinwheel packing instance A, if A is unschedulable, then for all θ, pfoldθ(A) is
unschedulable (Lemma 4 of [14]).

Lemma 1.1 is called the monotonicity property, and Lemma 1.2 is called the partitioning property.
Just as 5

6 is an optimal density bound for the packing setting, in the covering setting, due to Fact 2, if a
density bound of

∑∞
i=0

1
2i+1 were true, it would be optimal. We refer to the conjecture that this density bound is
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indeed possible (i.e., every instance with density at least
∑∞

i=0
1

2i+1 is schedulable) as the 2i + 1 conjecture, and
it was originally posed by Kawamura and Soejima (Conjecture 18 of [16]). This conjecture is particularly relevant
due to the relatively recent resolution of the 5

6 conjecture [14] after over 30 years. Currently, the best-known
density bound is 1.546 [16].

The bamboo garden trimming problem [9] can be considered a special type of cup game, which ties back to
work done in the 1970s [20]. In particular, in the vanilla cup game, a filler repeatedly places p units of water
in some way across n cups, and the emptier gets to choose p cups to remove 1 unit of water from. Algorithms
to achieve optimal backlog (water height) are known in the vanilla setting [18] as well as more complex settings
[19, 2]. Bamboo Garden Trimming can be considered a form of cup game in the case of a constrained filler. There
has been significant work on understanding guarantees for simple BGT strategies such as Reduce-Max (which
trims the bamboo tree of the tallest height) and Reduce-Fastest (which trims the bamboo tree with the fastest
growth rate among trees that have reached a certain height) [6, 17]. Most work on state-of-the-art approximation
algorithms for bamboo garden trimming has been based on a reduction to pinwheel packing. There has been a
series of improving approximation factors, from 2 [9], to 32000

16947 [5], to 12
7 [21], to 1.6+ ϵ [11], to 10

7 [12], and finally
4
3 [14].

1.2 Contributions. This paper presents two independent but related contributions.

1. This paper improves the state-of-the-art density bound for discretized point patrolling from 1.546 [16] to
the optimal value of

∑∞
i=0

1
2i+1 ≈ 1.264. To do so, this paper extends the notions of monotonicity and

partitioning to pinwheel covering and introduces two fold operations for pinwheel covering instances, which
may be of independent interest.

2. This paper improves the state-of-the-art approximation factor among efficient algorithms for bamboo garden
trimming from 4

3 ≈ 1.333 [14] to 9
7 ≈ 1.286. To do so, this paper leverages the existing framework of [14], and

we also utilize custom packing obstructions that arise due to both number-theoretic reasons and exhaustive
search. For example, we prove that no instance which contains periods of 3 and 4 and density greater than 47

48
can be scheduled. The parameter 47

48 is usually replaced by the naive bound of 1 for general instances. To the
best of our knowledge, our paper is the first to improve over the naive bound of 1 in an instance-dependent
fashion. We believe that this technique can be combined with existing methods to produce significantly
better bounds than 9

7 , although this may require a large amount of pre-computation time.

Several of our claims involve search over a finite number of cases, similar to that found in [14]. Supporting
computational evidence for these claims is publicly available at: https://github.com/ahanbm/optimal-dpp

2 Technical Overview. In this section, we provide the high-level ideas and algorithms for our results in
pinwheel covering and bamboo garden trimming.

2.1 Pinwheel Covering. We start by setting up the basics for pinwheel covering.
We define a fractional pinwheel covering problem, analogous to the fractional packing problem:
Consider a fractional instance (a1, a2, a3, . . . , an) with ai ∈ R+ for all i ∈ [n]. We define a valid schedule as

one in which days are assigned to jobs in a way so that for all i ∈ [n] and for all d ∈ N, every sequence of d
consecutive days has job i scheduled at most ⌈ r

ai
⌉ times. We now formulate the analogue of the monotonicity and

partitioning properties [14] in the covering setting.

Lemma 2.1. Monotonicity (Covering): If A ⊔ (a) is schedulable, then A ⊔ (b) is schedulable for any b ≤ a.

Proof. Given a valid schedule for A ⊔ (a), we can reassign the days where the job with period a is scheduled
to the job with period b.

Lemma 2.2. Partitioning (Covering): If A ⊔ (a) is schedulable, then A ⊔ (a · q, a · q, . . . , a · q︸ ︷︷ ︸
q times

) is schedulable.

Proof. Given a valid schedule for A ⊔ (a), we can sequentially schedule the q jobs of period a · q within the
slots assigned to the job of period a, returning to the first job of period a · q after all are scheduled and repeating.
Since there is at least a gap of a between each scheduling of the original job of period a, there is a gap of at least
a · q between repetitions of the same job of period a · q in the new instance.
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We now define a fold operation cfoldθ(A), which is intended to take a pinwheel covering instance A and
transform it into an instance A′ such that no element of A′ is greater than θ ∈ N, and such that unschedulability
is preserved. Algorithm 2 shows the major steps.

Algorithm 2: Fold Operation cfoldθ(A)

1 Input: Pinwheel covering instance A = (a1, a2, a3, . . . , an)
2 while the maximum value a ∈ A satisfies a > θ do
3 A← A⊖ (a)
4 b← max(A)
5 A← A⊖ (b)
6 if a < 2b then
7 A← A ⊔

(
a
2

)
8 else
9 A← A ⊔ (b)

10 return A

As in Algorithm 1, we use ⊖ to represent removing a job and ⊔ to represent adding one. Algorithm 2 can be
regarded as the natural analogue of the fold operation for the packing setting introduced by Kawamura [14]. It
can be shown that Algorithm 2 preserves unschedulability and decreases the density of A by at most 2

θ . Similar
to the fold operation in [14], Algorithm 2 can be leveraged to prove a density bound of 1.3 for discretized point
patrolling. Since Algorithm 2 preserves schedulability, we only need to consider instances with elements at most
θ whose density is at least 1.3− 2

θ . Due to the fractional setting, the set of all possible instances with elements at
most θ is infinite. We distill a finite set of instances by taking the ceiling of each element, and then leverage use
computer analysis. A density bound of 1.3 is already a substantial improvement over the current state-of-the-art
of 1.546, but proving the 2i + 1 conjecture requires more tools.

We briefly stop to justify why the current fold operation is insufficient. The density loss for our fold operation
is 2

θ while the density loss for Kawamura’s fold operation is 1
θ , so we might hope that the parameter 2 can be

improved. However, it is tight, e.g., consider the instance [θ+ 1, 2θ+ 1, 4θ+ 1, . . . , 2n · θ+ 1] for where n is large
and θ is a large power of 2. In order for the method described to work, we need to be able to schedule all instances
of elements at most θ with density at least − 2

θ +
∑∞

i=0
1

2i+1 . However, the instance [2, 3, 5, . . . , 2⌈log2 θ⌉−1 + 1] is
within the desired density bound, and we have already shown it is not schedulable in Fact 2.

Fact 3. Let A(θ) = [2, 3, 5, . . . , 2⌈log2 θ⌉−1 + 1]. For any θ, D(A(θ)) ≥ − 2
θ +

∑∞
i=0

1
2i+1 .

Fact 3 is proved in subsection A.3. This reasoning demonstrates that Algorithm 1 is insufficient to prove an
optimal bound directly, so we develop an improved fold algorithm.

Algorithm 3: Improved Fold Operation cfoldimp
θ (A)

1 Input: Pinwheel covering instance A = (a1, a2, a3, . . . , an) and θ = 2i for i ∈ Z>1

2 Amax ← max(A)

3 θcurrent ← 2⌈log2(Amax)⌉−1

4 while θcurrent ≥ θ do
5 Let n be the number of elements of A in the range (θcurrent, 2θcurrent]
6 if n is odd and n ≥ 3 then
7 Let m1 ≤ m2 ≤ m3 be the three smallest elements of A in the range (θcurrent, 2θcurrent]

8 if m3 ≤ 4
3θcurrent then

9 A← A⊖ (m1,m2,m3)

10 A← A ⊔
(
m3

3

)
11 A← cfoldθcurrent(A)
12 θcurrent ← θcurrent/2

13 return A
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Algorithm 3 achieves a better guarantee than a density loss of 2
θ in specific circumstances. In particular, it

can be shown that for a single iteration, if there are at least two elements between 2i−1 and 2i, the algorithm
achieves a density loss bound of 3

4θ . This bound is in contrast to the one iteration density loss bound for cfoldθ

of 1
θ . In addition, the improvement in density loss can be iterated under circumstances that we establish.
This improvement enables us, with computer search, to determine that all pinwheel covering instances with

density at least
∑∞

i=0
1

2i+1 are schedulable. The computer analysis is similar to that used for the 1.3 density
bound but with more detailed casework.

2.2 Bamboo Garden Trimming. We adopt the same reduction to pinwheel as [16]. Specifically, suppose
we have an algorithm (efficient, in the sense of being a fast online scheduler [14]) M that, for any pinwheel
packing instance (ai)i∈[k], either declares correctly that it is non-schedulable, or outputs a schedule for the
“relaxed” instance (⌊ 97 · ai⌋)i∈[k]. Then such an algorithm implies a 9

7 -approximation for BGT:
Given a BGT instance A = (ai)i∈[k], binary search for a height H such that M applied to (⌊H/hi⌋)i∈[k]

outputs a schedule but returns unschedulable if replaced by H − 1 (so the objective is no less than H). Since
this schedule satisfies the pinwheel packing instance (⌊ 97 · ⌊H/hi⌋⌋)i∈[k], it satisfies (⌊ 97 ·H/hi⌋)i∈[k]), and so it is
achieves an objective of 9

7 ·H. We begin by providing an algorithm (Algorithm 4) that will work in all but a few
cases which can be handled recursively.

Algorithm 4: Mhelper

1 Input: Pinwheel packing instance A = (a1, a2, . . . , ak) with a1 ≤ a2 ≤ · · · ≤ ak, and satisfying (a1) ̸= (2),
(a1, a2) ̸= (3, 3), and (a1, a2, a3, a4) ̸= (3, 6, 6, 6). T1, T2, and T3 are pre-computed constant-sized lookup
tables containing particular instances and their corresponding schedules.

2 Function DB(A)
3 if a1 = 3 and a2 ∈ {4, 5, 7} then
4 return 1− 1

3a2
2

5 else if (a1, a2, a3, a4) = (3, 6, 6, 8) then
6 return 1− 1

96

7 else
8 return 1

9 if D(A) > DB(A) then
10 return “unschedulable”

11 else if a1 = 3 then
12 A← pfold18(A)

13 A← (⌊ 97 ·A1⌋, ⌊ 97 ·A2⌋, . . . , ⌊ 97 ·Ak′⌋)
14 if A ∈ T1 then
15 return T1[A]

16 else
17 A← pfold28(A)

18 A← (⌊ 97 ·A1⌋, ⌊ 97 ·A2⌋, . . . , ⌊ 97 ·Ak′⌋)
19 return T2[A]

20 else
21 A← pfold14(A)

22 A← (⌊ 97 ·A1⌋, ⌊ 97 ·A2⌋, . . . , ⌊ 97 ·Ak′⌋)
23 return T3[A]

Note that Mhelper (Algorithm 4) does not explicitly output the bamboo tree to trim on each day due to the
intermediate use of the fold operation. However, the output can be regarded as an efficient representation of the
schedule, as needed for a fast online scheduler [14]. We now have the tools to set M (Algorithm 5). The recursive
handling of M can be considered a generalization of a technique used by [14] where it was only applied to job
periods of 2.
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Algorithm 5: M , a 9
7 -approximation for BGT.

1 Input: Pinwheel instance A = (a1, a2, . . . , ak) with a1 ≤ a2 ≤ · · · ≤ ak.
2 if k = 1 then
3 return the schedule that repeats task 1 every day.

4 if a1 = 2 then
5 A′ ← (⌊ 12 · ai⌋)i∈[k]\{1}
6 S′ ←M (A′)
7 if S′ = unschedulable then
8 return “unschedulable”

9 return a schedule S : Z→ [k] defined by

S(t) =

{
S′(t/2) + 1 for t ≡ 0 (mod 2)

1 for t ≡ 1 (mod 2)

10 else if a1 = 3 and a2 = 3 then
11 A′ ← (⌊ 13 · ai⌋)i∈[k]\{1,2}
12 S′ ←M (A′)
13 if S′ = unschedulable then
14 return “unschedulable”

15 return a schedule S : Z→ [k] defined by

S(t) =


S′(t/3) + 2 for t ≡ 0 (mod 3)

1 for t ≡ 1 (mod 3)

2 for t ≡ 2 (mod 3)

16 else if a1 = 3, a2 = 6, a3 = 6 and a4 = 6 then
17 A′ ← (⌊ 16 · ai⌋)i∈[k]\{1,2,3,4}
18 S′ ←M (A′)
19 if S′ = unschedulable then
20 return “unschedulable”

21 return a schedule S : Z→ [k] defined by

S(t) =



S′(t/6) + 4 for t ≡ 0 (mod 6)

1 for t ≡ 1, 4 (mod 6)

2 for t ≡ 2 (mod 6)

3 for t ≡ 3 (mod 6)

4 for t ≡ 5 (mod 6)

22 else
23 return Mhelper(A)

3 An Improved Density Bound for Pinwheel Covering. In this section, we prove a 1.3 density bound
for pinwheel covering. We rely on Algorithm 2 along with a new program for pinwheel covering adapting some
computer search ideas from the packing setting [10]. We start by proving properties of Algorithm 2.

Lemma 3.1. Every element of A′ = cfoldθ(A) is at most θ.

Proof. We can clearly see from the while loop condition in Algorithm 2 that upon termination, the maximum
value of the returned A must be no greater than θ. Furthermore, the algorithm terminates because, at every
iteration of the while loop, the length of A decreases by 1; thus, there are at most n iterations.
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Lemma 3.2. If A is unschedulable, then cfoldθ(A) is unschedulable.

Proof. We prove the contrapositive: if cfoldθ(A) is schedulable, then A is schedulable.
We prove the claim by induction on the number of remaining while loop iterations. For the base case, when

there are zero iterations left, the returned value is assumed to be schedulable. If the instance Ar, the value of
A with r remaining while loop iterations, is schedulable, then we need to prove Ar+1 is also schedulable. There
are two cases: either the a and b (highest and second-highest values) in Ar+1 were replaced by

(
a
2

)
(in the case

a < 2b) or by (b). In the case of (b), Ar+1 is the same as Ar but with an extra job, so Ar+1 is schedulable
according to the monotonicity property (we can treat Ar as having an ∞ period job).

In the case where a < 2b and the
(
a
2

)
job in Ar arose from the a and b jobs in Ar+1, we know that schedulability

of (Ar ⊖
(
a
2

)
) ⊔
(
a
2

)
implies schedulability of (Ar ⊖

(
a
2

)
) ⊔ (a, a) (by the partitioning property) and this in turn

implies schedulability of (Ar⊖
(
a
2

)
)⊔ (a, b) = Ar+1 (by the montonicity property). Since we covered both possible

cases, this completes the inductive step. Inducting till An′ where n′ is the total number of while loop iterations
to evaluate cfoldθ(A), we have that A is schedulable, as desired.

Lemma 3.3. D(cfoldθ(A)) ≥ D(A)− 2
θ

Proof. We split the density loss analysis into two parts: the last while loop iteration and the rest. For
any iteration, we claim that the density loss is at most 1

b −
1
a , where a and b are the maximum and second-

maximum values before that iteration. In particular, if a is deleted, then a ≥ 2b so b ≤ a
2 and the density loss is

1
a = 2

a −
1
a ≤

1
b −

1
a . If (a, b) is replaced with

(
a
2

)
then the density loss is 1

a + 1
b −

2
a = 1

b −
1
a , with direct equality.

The total density loss for all iterations but the last is

1

b1
− 1

a1
+

1

b2
− 1

a2
+

1

b3
− 1

a3
+ · · ·+ 1

bx−1
− 1

ax−1

where we have said that ai and bi are the maximum and second-maximum values before the ith iteration,
and there are x total iterations. Furthermore, bx ≥ ax+1 for all x, since at each iteration a either gets deleted or
replaced with a

2 in the case that a
2 < b. Therefore, the sum above can be upper-bounded by a telescoping sum:

1

bx−1
− 1

ax−1
+

1

ax−1
− 1

ax−2
+ · · ·+ 1

a2
− 1

a1
=

1

bx−1
− 1

a1
≤ 1

bx−1

Since there is another iteration and ax ≤ bx−1, we must have that bx−1 ≥ θ so the total density loss in all
iterations but the last is at most 1/θ. For the last iteration, we can make a similar claim as before and say that
the density loss is at most 1/a at any iteration, by similar logic as before. Either a is deleted for exact loss of 1

a
or the loss is 1

a + 1
b −

2
a = 1

b −
1
a and this is in the case a < 2b so 1

b −
1
a < 2

a −
1
a = 1

a . Therefore, the loss in the
last iteration is at most 1/θ, for a total density loss bound of

1

θ
+

1

θ
=

2

θ

as desired.

Lemma 3.4. Any instance A = (a1, a2, . . . , an) whose periods are integers at most 16 and satisfies D′(A) ≥
1.3− 2

16 is schedulable, where

D′(A) =

n∑
i=1

{
1/ai if ai ≤ 8,

1/(ai − 1) if a1 > 8.

Proof. The set of instances of such A is infinite, but we can consider the restricted subset R that contains
only those A that would be underneath the density bound if another element were to be removed. Specifically,
to convert a general A into an element of R, we remove the maximum element of A until another removal would
cause Aremoved to go under the density bound of 1.3− 2

16 . By monotonicity, if every element of R is schedulable,
then Lemma 3.4 is true. Since R contains a finite number of elements, it suffices to compute a schedule for each
possibility, which we have done.

Theorem 3.5. Every pinwheel covering instance with density at least 1.3 is schedulable.
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Proof. Suppose, for the sake of contradiction, that there exists an unschedulable instance A with D(A) ≥ 1.3.
Then, cfold16(A) is also unschedulable, according to Lemma 3.2. In addition, D(cfold16(A)) ≥ D(A) − 2

16 .
Consider A′ which contains a for all a ∈ cfold16(A) such that a ≤ 8, and additionally contains ⌈a⌉ for all
elements a ∈ cfold16(A) such that a > 8, with appropriate multiplicity. Since cfold16(A) is unschedulable,
A′ is also unschedulable according to the monotonicity property. In addition, since the elements of cfold16(A)
that are at most 8 are unchanged, and the rest increase by at most 1, D′(A′) ≥ D(cfold16(A)), implying that
D′(A′) ≥ D(A)− 2

16 and since D(A) ≥ 1.3, D′(A′) ≥ 1.3− 2
16 . Furthermore, because cfold16(A) produces elements

that are at most 16 according to Lemma 3.1, A′ does not increase elements above 16, and every element of A′ is
an integer, Lemma 3.4 applies. In particular, A′ is schedulable, a contradiction. This proves a bound of 1.3 for
pinwheel covering.

4 An Optimal Density Bound for Discretized Point Patrolling. In this section, we establish an
optimal density bound for discretized point patrolling. Specifically, we prove that any instance L with density at
least

∑∞
i=0

1
2i+1 is schedulable.

Lemma 4.1. Consider any instance L such that D(L) ≥
∑∞

i=0
1

2i+1 and let L ≤ r be the set of jobs in L

restricted to those with period less than r. Let W = [2, 3, 5, . . . , 2i + 1, . . . ]. Note that D(W ) =
∑∞

i=0
1

2i+1 , so
D(L) ≥ D(W ). Let S be the set of powers of 2, p, such that the following is true:

D(L ≤ p) > D(W ≤ p)

Then, S is not empty.

Proof. Let Lmax be the maximum element of L. Then, we claim that setting p = 2⌈log2(Lmax)⌉ satisfies the
inequality. Note that 2⌈log2(Lmax)⌉ ≥ Lmax, so

D(L ≤ p) = D(L)

In addition, D(W ) > D(W ≤ p) because W contains elements above p due to having unboundedly large
elements. We have that D(L) ≥ D(W ) from before, so putting everything together, we have

D(L ≤ p) = D(L) ≥ D(W ) > D(W ≤ p)

so D(L ≤ p) > D(W ≤ p). This is the exact criterion for being included in S, proving the claim.

Lemma 4.2. Consider any instance L such that D(L) ≥
∑∞

i=0
1

2i+1 . Since S, as defined in Lemma 4.1, is a
non-empty set of integers, by the well-ordering principle, it has a minimum element, call it E. Let Ni(A) be the
number of elements of a pinwheel covering instance A in the range (i, 2i].

Then, NE/2(L) ≥ 2.

Proof. Since E is contained in S, it must be that

D(L ≤ E) > D(W ≤ E)

In addition, since E is the minimum element of S, it must be that E/2 is not an element of S, meaning

D(L ≤ E/2) ≤ D(W ≤ E)

Since D(L ≤ E)−D(W ≤ E) > 0 and D(L ≤ E/2)−D(W ≤ E/2) ≤ 0, we have

[D(L ≤ E)−D(W ≤ E)]− [D(L ≤ E/2)−D(W ≤ E/2)] > 0

Simplifying,
D(L ≤ E)−D(L ≤ E/2) > D(W ≤ E)−D(W ≤ E/2)

Note that since L is composed of integers, the left-hand side is the density of elements in the range (E/2, E].
In addition, since W is composed of 2i + 1 for every natural number i and E/2 is a power of 2, E/2 + 1 ∈ W ,
and D(W ≤ E)−D(W ≤ E/2) = 1

E/2+1 . Therefore,

D(L ≤ E)−D(L ≤ E/2) >
1

E/2 + 1
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Since the maximum possible density of a single integer in the range (E/2, E] is 1
E/2+1 , having density strictly

greater than 1
E/2+1 in that range means that L contains at least two elements in the range (E/2, E].

We can now analyze the improved fold algorithm outlined in Algorithm 3.

Lemma 4.3. For any instance A, every element of A′ = cfoldimp
θ (A) is at most θ.

Proof. We can see that to get out of the while loop of line 4, θcurrent must be less than θ. In addition, since
both are powers of two at all times, θcurrent must be θ/2 after the while loop exit, so there is a while loop iteration
with θcurrent = θ. Now, noting line 11 and Lemma 3.1, before going to line 12, every element of A must be no
greater than θ. Line 11 always terminates because there are a finite number of elements greater than θcurrent at
each iteration, and at least one such element is removed per iteration of Algorithm 2. After the final execution of
line 11, the elements are not increased, so the returned instance has elements at most θ.

Lemma 4.4. For any instance A, if cfoldimp
θ (A) is schedulable, then A is schedulable.

Proof. We prove the claim by induction on the remaining iterations of the while loop in line 5 of Algorithm 3.
Let Ai be the value of A after the ith iteration of the while loop. If n is the total number of iterations, we can see
that An = cfoldimp

θ (A) so the claim is true in the base case. We want to prove that if At+1 is schedulable, then
At is schedulable. Let A(t+1)b be the value of A after line 6 of the (t+ 1)-th iteration of line 4 and let A(t+1)c be
the value of A after line 11 of the (t+ 1)-th iteration of line 4 (this is equivalent to At+1).

According to Lemma 3.2, if A(t+1)c is schedulable then A(t+1)b is schedulable. To prove that At is schedulable,
we do casework based on whether the if condition of line 6 is true or false. If false, then At = A(t+1)b so
At is schedulable. If true, then we can see schedulability by imagining the process in two steps, one in which
(m1,m2,m3) is replaced by (m3,m3,m3) and another in which (m3,m3,m3) is replaced by

(
m3

3

)
. The first

step preserves unschedulability due to the monotonicity property (Lemma 2.1), and the second step preserves
unschedulability due to the partitioning property (Lemma 2.2). By the principle of mathematical induction, A is
schedulable.

Lemma 4.5. Let us define Ai as the value of A after the ith iteration of line 4 of Algorithm 3 and θi as the
value of θcurrent during the ith iteration of the while loop on line 4 (so θ1 is the initial value).

For any instance A and any i ≥ 1, if Nθi(Ai−1) ≥ 2, then

D(Ai) ≥ D(Ai−1)−
3

4θi

In addition, if Nθi(Ai−1) is even, then

D(Ai) ≥ D(Ai−1)−
1

2θi

Lemma 4.5 is proved in Appendix B.1. Note that the naive density loss bound is 1
θi

even without any
requirement on Nθi(Ai−1). The improved 1

2θi
bound holds even for the initial fold operation (Algorithm 2) for

cases in which Nθi(Ai−1) is even. The improved 3
4θi

bound in the odd case arises from our thirding operation and
optimizing the parameter 4

3 in line 8 of Algorithm 3.

Lemma 4.6. For any instance A with density at least
∑∞

i=0
1

2i+1 , if θ ≥ 16, Nθ1(A) ≥ 2, and 2θ1 is the
minimum value of p that is a power of 2 satisfying D(A ≤ p) > D(W ≤ p), then

D(cfoldimp
θ (A)) ≥ D(A)−

1+log2(θ1/θ)∑
m=1

3

4θm

Lemma 4.6 is proved in Appendix B.2. The high-level idea is to iterate the density loss bound from Lemma 4.5
by arguing that if Nθi(Ai−1) ≥ 2 holds initially, then it continues to hold.

Theorem 4.7. Any instance L with density at least
∑∞

i=0
1

2i+1 is schedulable.

Theorem 4.7 is proved in Appendix B.3. Given Algorithm 3, the idea is similar to the proof of Lemma 3.4, but
involving more cases and subcases. In particular, unlike Lemma 3.4, there is a parameter E (from Lemma 4.2)
which is relevant to our analysis, so we must do casework based on E. Furthermore, Theorem 4.7 is exactly the
2i + 1 conjecture, proving the desired optimal density bound.
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5 An Improved Approximation for BGT. We begin by proving that Mhelper (Algorithm 4) provides
correct output assuming that the input satisfies the preconditions. That is, we prove that if the algorithm
outputs “unschedulable” then A is really unschedulable and if it outputs a schedule, then it is a valid schedule
for (⌊ 97 · A1⌋, ⌊ 97 · A2⌋, . . . , ⌊ 97 · Ak⌋). We begin with the unschedulable case. For the DB(A) = 1 case, it can
clearly be seen that the output is correct because it only declares schedulability if D(A) > 1. We prove the case
of DB(A) = 1− 1

3a2
2

in a more general way.

Lemma 5.1. For any a, b ∈ N>1 with a < b such that gcd(a, b) = 1, a pinwheel instance A satisfying
(a1, a2) = (a, b) and D(A) > 1− 1

ab2 is unschedulable.

Lemma 5.1 is proved in Appendix C.1. We can prove the 95
96 bound for the (3, 6, 6, 8) case similarly.

Lemma 5.2. Any pinwheel instance A satisfying (a1, a2, a3, a4) = (3, 6, 6, 8) and D(A) > 1 − 1
96 is

unschedulable.

Lemma 5.2 is proved in Appendix C.2. We now prove that if Mhelper (Algorithm 4) outputs a schedule, then
the schedule is valid.

Lemma 5.3. For any pinwheel instance A and any θ ∈ N, let Af = (⌊ 97 · A1⌋, ⌊ 97 · A2⌋, . . . , ⌊ 97 · Ak⌋), let
B = pfoldθ(A) and let C = (⌊ 97 ·B1⌋, ⌊ 97 ·B2⌋, . . . , ⌊ 97 ·Bk′⌋).

If C is schedulable, then Af is schedulable.

Lemma 5.3 is proved in subsection C.3. Now that we have proven the correctness of Mhelper, we focus on
proving the correctness of M (Algorithm 5) under the assumption that Mhelper (Algorithm 4) is correct.

Theorem 5.4. M is a 9
7 -approximation algorithm for Bamboo Garden Trimming.

Proof. We prove the correctness of M (Algorithm 5) by induction on the number of jobs in A. The output is
clearly correct in the base case (else case) because M directly delegates to Mhelper and satisfies its preconditions
due to filtering out the special cases. The a1 = 2 case is directly given in [16]. Specifically, declaring A
unschedulable if A′ is unschedulable is justified because if A were schedulable, all the instances of task 1 could be
removed to generate a schedule for A′. Now, if a schedule is found for A′ (which is correct, by induction), then
job i > 1 is scheduled at least every ⌊ 97 · ⌊

1
2 · ai⌋⌋ days, so in the final schedule S it is scheduled at least every

2 · ⌊ 97 · ⌊
1
2 · ai⌋⌋ ≤ ⌊

9
7 · ai⌋ days, as desired.

For the a1 = 3, a2 = 3 case, we can declare A unschedulable if A′ is unschedulable, since if A were schedulable,
all instances of tasks 1 and 2 could be removed to generate a schedule for A, since in every 3 days there are at
least two combined schedulings of jobs 1 and 2. If a schedule is found for A′, then job i > 2 is scheduled at least
every ⌊ 97 · ⌊

1
3 · ai⌋⌋ days, so in the final schedule S it is scheduled at least every 3 · ⌊ 97 · ⌊

1
3 · ai⌋⌋ ≤ ⌊

9
7 · ai⌋ days, as

desired. For the a1 = 3, a2 = 6, a3 = 6, a4 = 6 case, we can declare A unschedulable if A′ is unschedulable, since
if A were schedulable all instances of tasks 1, 2, 3, and 4 could be removed to generate a schedule for A, since in
every 6 days there are at least five combined schedulings of jobs 1, 2, 3, and 4. If a schedule is found for A′, then
job i > 4 is scheduled at least every ⌊ 97 · ⌊

1
6 · ai⌋⌋ days, so in the final schedule S it is scheduled at least every

6 · ⌊ 97 · ⌊
1
6 · ai⌋⌋ ≤ ⌊

9
7 · ai⌋ days, as desired. This completes the proof of correctness of M .

6 Conclusion. In this paper, we have proven that for any discretized point patrolling instance A with
D(A) ≥

∑∞
n=1

1
2n+1 , A is schedulable. This resolves a conjecture posed in several related works [14, 16, 15] and

complements the recent proof of the 5
6 density bound in the pinwheel packing setting [14].

Our bound is provably optimal, so it puts the question of the right density bound for general discretized point
patrolling instances to rest. However, there has been recent work on the density bound for instances depending
on the minimum element in the instance [15, 11, 8]. The right density bound is not known in this case, even
asymptotically. Besides discretized point patrolling, we have also produced an algorithm that achieves a state-of-
the-art 9

7 -approximation for the bamboo garden trimming problem. With respect to future research, we field the
following conjecture:

Conjecture 1. For any r > 1, there is an efficient r-approximation for Bamboo Garden Trimming.

To the best of our knowledge, our work has been the first to establish instance-dependent density bounds
beyond the naive bound of 1 for bamboo garden trimming instances. We hope that this, in conjunction with
the fold operation and exhaustive computer search ideas introduced by Kawamura [14], can produce a decreasing
sequence of bounds towards Conjecture 1.
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A Proof of Facts.

A.1 Proof of Fact 1.

Proof. Suppose, for the sake of contradiction, that a valid schedule exists. Let i be a day on which job 3
is scheduled such that i > 1. Consider the jobs assigned on days i − 1 and i + 1. Suppose, for the sake of
contradiction, that day i− 1 is not assigned to job 1. Then, days i− 1 and i are a sequence of length 2 with no
days assigned to job 1 but a1 = 2, so this contradicts the definition of a valid schedule. Therefore, day i− 1 must
be assigned to job 1. Similarly, day i+ 1 must be assigned to job 1. However, then day i− 1, i and i+ 1 form a
sequence of length 3 with no days assigned to job 2 but a2 = 3, a contradiction. So, we have proven that (2, 3, a3)
is not schedulable.

A.2 Proof of Fact 2.

Proof. We restate the proof given by Kawamura and Soejima [16], proving the claim by induction on k,
attempting to prove that with k jobs we cannot find a valid schedule for even 2k consecutive days. For k = 1, we
have a single job of period 2 and want to schedule the first two days. Since only one of the two can be assigned
to the single job, the base case is true.

For the inductive case, suppose we have some k = n + 1. If the job of period 2n+1 + 1 is scheduled past
day 2n, then the first n jobs are validly assigned to the first 2n days. Otherwise, the job of period 2n+1 + 1 is
scheduled before or at day 2n, in which case the first n jobs are validly assigned on the last 2n days. Either way,
we contradict the inductive hypothesis.

A.3 Proof of Fact 3.

Proof. Let n = ⌈log2 θ⌉. We have

D(A) =

( ∞∑
i=0

1

2i + 1

)
− 1

2n + 1
+

1

2n+1 + 1
+ · · · =

∞∑
i=0

1

2i + 1
−

∞∑
i=n

1

2i + 1

≥
∞∑
i=0

1

2i + 1
−

∞∑
i=n

1

2i
= − 2

2n
+

∞∑
i=0

1

2i + 1

Now, note that since n = ⌈log2 θ⌉, 2n ≥ θ. Therefore,

D(A) ≥ − 2

2n
+

∞∑
i=0

1

2i + 1
≥ −2

θ
+

∞∑
i=0

1

2i + 1

as desired.

B Omitted Proofs in Section 4.

B.1 Proof of Lemma 4.5.

Proof. If n = 0 for the even case, we will have zero loss and 0 ≤ 1
2θi

. Now, since Nθi(Ai−1) ≥ 2, if n (from
line 6 of Algorithm 3) is odd, then the if condition will be triggered; otherwise, if n is even, it will not. We split
these up with casework.

Case 1: n is even
The if condition on line 6 of Algorithm 2 (which is activated from line 11 of Algorithm 3) is always true since

both a and b are in the range (θi, 2θi]. This is because there are an even number of values in this range initially,
and we remove two at a time (after dividing a number in this range by 2 it will be outside of the range). Let
(aj , bj) be the values of a and b during the jth iteration of the while loop of Algorithm 2. Note that the loss on
iteration j is

1

bj
− 1

aj

because we can treat line 7 of Algorithm 2 as increasing the period of a job from bj to aj , which induces the
density loss above, and then dividing by 2 according to partitioning, which induces no density loss.

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited



In addition, because bj is the second-largest element of A during iteration j and both aj and bj are removed,
we must have aj+1 ≤ bj . Therefore, the total loss is

n/2∑
j=1

(
1

bj
− 1

aj

)
≤

n/2−1∑
j=1

(
1

aj+1
− 1

aj

)
+

1

bn/2
− 1

an/2

Noting that the sum on the right hand side is telescoping, we can simplify the expression to

1

an/2
− 1

a1
+

1

bn/2
− 1

an/2
=

1

bn/2
− 1

a1

We have already discussed that a, b ∈ (θi, 2θi] for all iterations, so bn/2 > θi and a ≤ 2θi. Thus,

1

bn/2
− 1

a1
≤ 1

θi
− 1

2θi
=

1

2θi

Now, 1
2θi
≤ 3

4θi
, as desired.

Case 2: n is odd
Recall that the condition of line 6 of Algorithm 3 is asserted in this case, so we split the casework depending

on whether the condition of line 8 is true or false

Subcase 1: m3 ≤ 4
3θi

The density loss from the combined effect of lines 9 and 10 is

1

m1
− 1

m3
+

1

m2
− 1

m3

Since both m1 and m2 are defined to be in the range (θi, 2θi], this density loss is at most

2

θi
− 2

m3

To bound the additional density loss from line 11 of Algorithm 3, we renew our analysis of case 1. In particular,
since we started with an odd number of elements and removed 3, we must now have an even number of remaining
elements in the range (θi, 2θi], specifically n− 3. If we define (aj , bj) in the same way as before, we have that the
total density loss attributable to line 11 is at most

1

b(n−3)/2
− 1

a1

As before, a1 ≤ 2θi. In addition, because m1, m2, and m3 were defined as the three smallest elements of A
in the range (θi, 2θi], we have b(n−3)/2 ≥ m3. Therefore,

1

b(n−3)/2
− 1

a1
≤ 1

m3
− 1

2θi

Now, the total loss on iteration i of line 4 is upper-bounded by(
2

θi
− 2

m3

)
+

(
1

m3
− 1

2θi

)
=

3

2θi
− 1

m3

Recalling that m3 ≤ 4
3θi we have

3

2θi
− 1

m3
≤ 3

2θi
− 3

4θi
=

3

4θi

This proves an overall density loss of at most 3
4θi

for this subcase, as desired.
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Subcase 2: m3 > 4
3θi

We again renew the analysis of case 1, getting that the density loss on the first (n− 1)/2 iterations (recalling
that n ≥ 3) is at most

1

b(n−1)/2
− 1

a1

Now, note that on the first iteration of line 2 of Algorithm 2 that occurs during line 11 of Algorithm 3, (a1, b1)
will be replaced with

(
2
a1

)
in A because both are in the range (θ1, 2θ1] so it cannot be that a1 ≥ 2b1. In addition,

a1 ≤ 2θ1 so a1

2 ≤ θ1, meaning that it is not involved in any of the first (n− 1)/2 after the first one. After the first
(n− 1)/2 iterations of line 2 of Algorithm 2, there is one remaining element in the range (θ1, 2θ1] because there
are n initially and each of the previous iterations removes 2 of them. By our definitions, this remaining element
is a(n+1)/2. We claim that the density loss on the last while loop iteration is at most

1

b(n+1)/2
− 1

a(n+1)/2

If a(n+1)/2 < 2b(n+1)/2 then line 7 of Algorithm 2 is executed and the density loss above holds with equality
since b(n+1)/2 is effectively replaced by a(n+1)/2. If a(n+1)/2 ≥ 2b(n+1)/2 then line 7 of Algorithm 2 is executed
during line 11 of Algorithm 3 and we have a density loss of 1

a(n+1)/2
. However, since b(n+1)/2 ≤

a(n+1)/2

2 in this
case,

1

b(n+1)/2
− 1

a(n+1)/2
≥ 2

a(n+1)/2
− 1

a(n+1)/2
=

1

a(n+1)/2

so in either case the density loss is upper bounded by

1

b(n+1)/2
− 1

a(n+1)/2

Now, the overall density loss in this subcase is at most(
1

b(n−1)/2
− 1

a1

)
+

(
1

b(n+1)/2
− 1

a(n+1)/2

)
where we have added the density losses from all but the last iteration and the last iteration. As we have

discussed, before the last iteration A contained a a1

2 so

1

b(n+1)/2
≤ 2

a1

In addition, because b(n−1)/2 is the second-largest element of A on the ((n − 1)/2)-th iteration and both of
the largest elements are removed, on the next iteration, the ((n+ 1)/2)-th, the largest element, a(n+1)/2 must be
at most b(n−1)/2. So,

1

b(n−1)/2
≤ 1

a(n+1)/2

Plugging these inequalities into the density loss formula, we have(
1

b(n−1)/2
− 1

a1

)
+

(
1

b(n+1)/2
− 1

a(n+1)/2

)
≤ 2

a1
− 1

a1
+

1

a(n+1)/2
− 1

a(n+1)/2
=

1

a1

Finally, a1 is the maximum element of A before the while loop execution, and m3 is an element of A, so
a1 ≥ m3. In addition, in this case m3 > 4

3θi so

1

a1
≤ 1

m3
<

3

4θi

This proves the desired density bound for this subcase, and we have now completed both subcases, so Case
2 is complete. Since n is guaranteed to be either even or odd, this completes the proof.
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B.2 Proof of Lemma 4.6.

Proof. Note that iterations of line 4 of Algorithm 3 continue until θcurrent becomes θ (inclusive), and θcurrent
is halved at each step so there are log2(θ1/θ) + 1 iterations. We will prove the claim by induction on the number
of completed iterations. In particular, we define

P (i) := D(Ai) ≥ D(A)−
i∑

m=1

3

4θm

For the base case P (1), we have that Nθ1(A) ≥ 2 so we can immediately apply Lemma 4.5 to get that

D(A1) ≥ D(A)− 3

4θ1

P (1) is the statement that

D(A1) ≥ D(A)−
1∑

m=1

3

4θm
= D(A)− 3

4θ1

so the claim result shows that P (1) is true.Now, we want to prove that for any t such that 1 ≤ t <
1 + log2(θ1/θ), P (t) implies P (t+ 1). In other words, we are given that

D(At) ≥ D(A)−
t∑

m=1

3

4θm

We do casework depending on the value of Nθt+1(At), aiming to prove that the density loss on the (t+ 1)-th
iteration is at most 3/(4θt+1) in any case.

Case 1: Nθt+1
(At) = 0

In this case, there is no density loss because n < 3, so the condition of line 6 is not asserted, and the while
loop condition within line 11 is false, so we exit. 0 ≤ 3

4θt+1
, as desired.

Case 2: Nθt+1
(At) ≥ 2

We can apply Lemma 4.5 to immediately get that

D(At+1) ≥ D(At)−
3

4θt+1

implying the desired density loss bound.

Case 3: Nθt+1
(At) = 1

We claim that in this case there must have been a thirding operation (i.e., line 10) on the previous iteration
of the algorithm. Suppose, for the sake of contradiction, that there was no thirding operation in the previous
iteration. Then, we claim that the smallest element generated (i.e., introduced by either line 10 of Algorithm 3 or
line 7 of Algorithm 3) by the algorithm across all previous iterations is greater than θt+1. This is because on an
iteration where θcurrent = θ′, line 10 generates values greater than θ′

3 and line 7 of Algorithm 2 generates values
greater than θ′

2 .
Since θcurrent halves at each step, θ′

2 ≥ θt+1 where θ′ corresponds to any previous iteration. In addition,
because no thirding occurs on the immediate previous iteration, the θ′ values for which thirding occurs satisfy
θ′

4 ≥ θt+1. θ′

3 > θ′

4 so this completes the proof that every element generated by the algorithm before iteration t+1
is greater than θt+1. Now, since p = 2θ1 was originally the minimum power of 2 such that D(A ≤ p) > D(W ≤ p)
and no elements were introduced in the range (0, θt+1], p = θt+1 does not satisfy

D(At ≤ p) > D(W ≤ p)

In other words,

D(At ≤ θt+1) ≤
log2(θt)−2∑

i=0

1

2i + 1
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Nθt+1
(At) = 1 implies there is a single element in the range (θt+1, 2θt+1], call it d. Recalling that At is

composed entirely of values at most 2θt+1, we have that

D(At) = D(At ≤ θt+1) +
1

d

Since d > θt+1, we have

D(At) ≤
1

θt+1
+

log2(θt)−2∑
i=0

1

2i + 1

By our inductive hypothesis, we have that

D(At) ≥ D(A)−
t∑

m=1

3

4θm

Putting the two inequalities above together, we have

D(A)−
t∑

m=1

3

4θm
≤ 1

θt+1
+

log2(θt)−2∑
i=0

1

2i + 1

Recall that p = 2θ1 satisfies D(A ≤ p) > D(W ≤ p), so

D(A) >

log2(θ1)∑
i=0

1

2i + 1

Plugging this into the previous inequality, we have

log2(θ1)∑
i=0

1

2i + 1
−

log2(θt)−2∑
i=0

1

2i + 1
≤ 1

θt+1
+

t∑
m=1

3

4θm

Simplifying the left hand side, we have

log2(θ1)∑
i=0

1

2i + 1
−

log2(θt)−2∑
i=0

1

2i + 1
=

log2(θ1)∑
i=log2(θt)−1

1

2i + 1

Plugging this into the inequality, it becomes

log2(θ1)∑
i=log2(θt)−1

1

2i + 1
−

t∑
m=1

3

4θm
≤ 1

θt+1

Manipulating the left hand side, we have

log2(θ1)∑
i=log2(θt)−1

1

2i + 1
−

t∑
m=1

3

4θm
=

1

θt/2 + 1
+

log2(θ1)∑
i=log2(θt)

1

2i + 1
−

t∑
m=1

3

4θm

=
1

θt+1 + 1
+

log2(θ1)∑
i=log2(θt)

(
1

2i + 1
− 3

4
· 1
2i

)
Plugging back into the inequality, it becomes

1

θt+1 + 1
+

log2(θ1)∑
i=log2(θt)

(
1

2i + 1
− 3

4
· 1
2i

)
≤ 1

θt+1

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited



Note that we have assumed θ ≥ 16, so θt ≥ 32. So, the i in the summation is at least five at every summand.
Then,

1

2i + 1
− 3

4
· 1
2i

=
1

4
· 1
2i

+
1

2i + 1
− 1

2i
=

1

4
· 1
2i
− 1

2i + 1
· 1
2i

=
1

2i
·
(
1

4
− 1

2i + 1

)
> 0

where we have used i ≥ 2 in the last step. This means that

log2(θ1)∑
i=log2(θt)

(
1

2i + 1
− 3

4
· 1
2i

)
≤ 1

2log2(θt) + 1
− 3

4
· 1

2log2(θt)
=

1

θt + 1
− 3

4
· 1
θt

Plugging this into the previous inequality, we have

1

θt+1 + 1
+

1

θt + 1
− 3

4
· 1
θt
≤ 1

θt+1

Recalling that θt = 2θt+1, the inequality becomes

1

θt+1 + 1
+

1

2θt+1 + 1
− 3

4
· 1

2θt+1
≤ 1

θt+1

Manipulating the inequality, it becomes(
1

θt+1
− 1

θt+1 + 1

)
+

(
1

2θt+1
− 1

2θt+1 + 1

)
≥ 1

4
· 1

2θt+1

Manipulating further, we have

1

θt+1 · (θt+1 + 1)
+

1

2θt+1 · (2θt+1 + 1)
≥ 1

8θt+1

Recall that we have assumed θ ≥ 16, so we also have θt+1 ≥ 16. Since

1

θt+1 · (θt+1 + 1)
+

1

2θt+1 · (2θt+1 + 1)
≤ 1

θ2t+1

+
1

4θ2t+1

=
5

4θ2t+1

we can plug this into the inequality to get

5

4θ2t+1

≥ 1

8θt+1

Simplifying, we have

θt+1 ≤
40

4
= 10

However, we have assumed that θt+1 ≥ 16, generating a contradiction. Thus, we have proven that in this
case (where Nθt+1(At) = 1), a thirding must have occurred on the previous iteration. We now do casework based
on whether d (the lone element in (θt+1, 2θt+1]) is greater or less than 4

3θt+1, noting that there is only 1 iteration
within line 11.

Subcase 1: d ≥ 4
3θt+1

In this case, if line 9 of Algorithm 2 is executed, then d is deleted, resulting in a density loss of 1
d . If line 7 of

Algorithm 2 is executed, it must be that b > a
2 , and so the density loss is

1

b1
− 1

a1
≤ 2

a1
=

1

a1
=

1

d

The density loss is at most 1
d in either situation and since d ≥ 4

3θt+1, the density loss in this subcase is at
most 3

4θt+1
, as desired.
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Subcase 2: d < 4
3θt+1

We have proven that there was a thirding at the previous iteration, and the value that was divided by
three was at least 2θt+1, meaning the thirded value is at least 2

3θt+1. This means that b1 ≥ 2
3θt+1. Since

d < 4
3θt+1 = 2 · 43θt+1, line 7 of Algorithm 2 must be executed, for a corresponding density loss of

1

b1
− 1

a1
≤ 1

b1
− 1

2b1
=

1

2b1

Recalling that b1 ≥ 2
3θt+1, the density loss is at most 3/(4θt+1), as desired. Since this exhausts the set of

possibilities for d, this completes the analysis for this case. In addition, since Nθt+1
= 0, Nθt+1

= 1 or Nθt+1
≥ 2,

we have considered all 3 possible cases. This means that the density loss on the (t + 1)-th iteration is at most
3/(4θt+1) in any case. So,

D(At+1) ≥ D(At)−
3

4θt+1

and from the inductive hypothesis we have that

D(At) ≥ D(A)−
t∑

m=1

3

4θm

so combining these inequalities we have

D(At+1) ≥ D(A)− 3

4θt+1
−

t∑
m=1

3

4θm
= D(A)−

t+1∑
m=1

3

4θm

This is exactly P (t + 1), so this completes the inductive step. By the principle of mathematical induction,
P (x) is true for all x up to and including the last iteration, x = 1+log2(θ1/θ). P (1+ log2(θ1/θ)) is the statement
that

D(A1+log2(θ1/θ)
) ≥ D(A)−

1+log2(θ1/θ)∑
m=1

3

4θm

Since this is the last iteration, by the definition of Ai, we have that

A1+log2(θ1/θ)
= cfoldimp

θ (A)

meaning our inequality becomes

D(cfoldimp
θ (A)) ≥ D(A)−

1+log2(θ1/θ)∑
m=1

3

4θm

This is exactly the statement of our claim, completing the proof.

B.3 Proof of Theorem 4.7.

Proof. We proceed with casework based on the value of E, which is guaranteed to exist due to Lemma 4.2.
Case 1: E = 1
D(W ≤ 1) = 0, so D(L ≤ 1) > 0. In this case, L must contain at least one element that is a 1, and the

instance [1] is schedulable (it can be repeated infinitely), so by monotonicity, L is schedulable as well.

Case 2: E = 2
D(W ≤ 2) = 1

2 , so D(L ≤ 2) > 1
2 . This means L must contain either a 1, in which case it is schedulable, as

before, or two 2’s, also implying schedulability.

Case 3: E = 4
D(W ≤ 4) = 1

2 + 1
3 = 5

6 , so D(L ≤ 4) > 5
6 .
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We claim that L′ = cfold32(L) is schedulable (note that this is not the improved fold operation). By
Lemma 3.3, we have that

D(L′) ≥ D(L)− 2

32

We do casework depending on the value of N16(L
′) and whether a thirding operation occurs (i.e., line 10).

Subcase 1: N16(L
′) ≤ 1

Note that the elements that are introduced by cfoldθ(A) are greater than θ/2. In particular, in our case, it
means that the elements of D(L′ ≤ 16) were all present in L to begin with. Now, we claim that L′′ = L′ ≤ 16 is
schedulable. In particular, note that

D(L′′) ≥ D(L′)− 1

16
≥ D(L)− 2

32
− 1

16
= D(L)− 2

16

Recalling that D(L) ≥
∑∞

i=0
1

2i+1 , by assumption, we have

D(L′′) ≥ − 2

16
+

∞∑
i=0

1

2i + 1

Since no elements were introduced in L′ that were less than or equal to 16, L′′ is entirely composed of
integers, and D(L′′ ≤ 4) = D(L ≤ 4) > 5

6 . Note that there are only a finite number of integer pinwheel instances
A satisfying the following conditions, where we denote the maximum element of A as m:

• m ≤ 16

• D(A ≤ 4) > 5
6

• D(A) ≥ − 2
16 +

∑9
i=0

1
2i+1

• D(A⊖m) < − 2
16 +

∑9
i=0

1
2i+1

The last condition prevents us from considering infinitely long instances. We have enumerated and found a
solution to all possible A satisfying the four conditions above. This means that L′′ is schedulable because we
already know that it satisfies the first three conditions, so we can remove the maximum element until it satisfies
the fourth condition, resulting in schedulability, and by the monotonicity property, this means L′′ is schedulable
as well. Again applying the monotonicity property, this means L′ is schedulable, as desired.

Subcase 2: N16(L
′) ≥ 2 and cfoldimp

16 (L′) does not involve a thirding operation
In this case, we claim that L′′ = cfoldimp

16 (L′) is schedulable. Note that by Lemma 4.5, we have

D(L′′) ≥ D(L′)− 3

4
· 1
16

Putting this together with D(L′) ≥ D(L)− 1
16 we have

D(L′′) ≥ D(L)− 7

4
· 1
16
≥ −7

4
· 1
16

+

∞∑
i=0

1

2i + 1

Recall our D′(A) definition from Lemma 3.4 as

D′(A) =

n∑
i=1

{
1/ai if ai ≤ 8,

1/(ai − 1) if a1 > 8.

Note that there are a finite number of integer instances A with maximum m satisfying

• m ≤ 16
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• D(A ≤ 4) > 5
6

• D′(A) ≥ − 7
4 ·

1
16 +

∑9
i=0

1
2i+1

• D′(A⊖m) < − 7
4 ·

1
16 +

∑9
i=0

1
2i+1

We have enumerated and found a solution to all possible A satisfying the four conditions above. Then, L′′′,
which is created by taking the ceiling of every element of L′′ and removing the maximum until it satisfies the last
condition, is schedulable. Therefore, by the monotonicity property, L′′ is schedulable as well. Note that the D′

function accounts for the density change due to taking ceilings, and we only need to do 1/(ai−1) for a > 8 because
if no thirding occurs then every element generated by cfoldimp

16 (L′) is greater than 8. Since L′′ is schedulable, by
Lemma 4.4, L′ is schedulable, as desired.

Subcase 3: N16(L
′) ≥ 2 and cfoldimp

16 (L′) involves a thirding operation
In this case, we claim that a slight modification of cfoldimp

16 (L′) is schedulable. In particular, since a thirding
operation occurred and the while loop in line 4 iterates once, with at most one thirding operation per iteration,
there is a unique element v generated by the thirding.

We claim that L′′ = (cfoldimp
16 (L′)⊖ v)⊔ (3v, 3v, 3v) is schedulable. Note that we have essentially reversed the

thirding operation, and if L′′ is schedulable then L′ is schedulable because the combined execution of lines 9 and
10 and our reversal replaces (m1,m2) with (m3,m3), preserving unschedulability, and the rest of our operations
also preserve unschedulability, as discussed in Lemma 4.4. In addition, applying Lemma 4.5 we have

D(L′′) = D(cfoldimp
16 (L′)) ≥ D(L′)− 3

4
· 1
16
≥ D(A)− 1

16
− 3

4
· 1
16
≥ −7

4
· 1
16

+

∞∑
i=0

1

2i + 1

Note that there are a finite number of integer instances A with top 4 maximum elements m1 ≥ m2 ≥ m3 ≥ m4

satisfying

• m1 = m2 = m3

• 17 ≤ m1 ≤ 22

• m4 ≤ 16

• D(A ≤ 4) > 5
6

• D′(A) ≥ − 7
4 ·

1
16 +

∑9
i=0

1
2i+1

• D′(A⊖m4) < − 7
4 ·

1
16 +

∑9
i=0

1
2i+1

We have enumerated and found a solution to all possible A satisfying the four conditions above.
Then, L′′′, which is created by taking the ceiling of every element of L′′ and removing the m4 element

(maximum under 17) until it satisfies the last condition, is schedulable, so by the monotonicity property, L′′ is
schedulable as well. As discussed previously, this implies L′ is schedulable, as desired.

The three subcases above exhaust all possibilities, so this proves that L′ is schedulable in any subcase. By
the contrapositive of Lemma 3.2, this means L is schedulable, as desired.

Case 4: E = 8
D(W ≤ 8) = 1

2 + 1
3 + 1

5 = 31
30 , so D(L ≤ 8) > 31

30 . We follow a similar procedure to the previous case, simply
replacing the D(A ≤ 4) > 5

6 condition with D(A ≤ 8) > 31
30 . We do casework depending on the value of N16(L

′)
and whether a thirding operation occurs (i.e., line 10).

Subcase 1: N16(L
′) ≤ 1

Note that the elements that are introduced by cfoldθ(A) are greater than θ/2. In particular, in our case, it
means that the elements of D(L′ ≤ 16) were all present in L to begin with. Now, we claim that L′′ = L′ ≤ 16 is
schedulable.

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited



In particular, note that

D(L′′) ≥ D(L′)− 1

16
≥ D(L)− 2

32
− 1

16
= D(L)− 2

16

Recalling that D(L) ≥
∑∞

i=0
1

2i+1 , by assumption, we have

D(L′′) ≥ − 2

16
+

∞∑
i=0

1

2i + 1

Since no elements were introduced in L′ that were less than or equal to 16, L′′ is entirely composed of integers,
and D(L′′ ≤ 8) = D(L ≤ 8) > 31

30 . Note that there are only a finite number of integer pinwheel instances A
satisfying the following conditions, where we denote the maximum element of A as m:

• m ≤ 16

• D(A ≤ 8) > 31
30

• D(A) ≥ − 2
16 +

∑9
i=0

1
2i+1

• D(A⊖m) < − 2
16 +

∑9
i=0

1
2i+1

We have enumerated and found a solution to all possible A satisfying the four conditions above. This means
that L′′ is schedulable because we already know that it satisfies the first three conditions, so we can remove
the maximum element until it satisfies the fourth condition, resulting in schedulability, and by the monotonicity
property, this means L′′ is schedulable as well. Again applying the monotonicity property, this means L′ is
schedulable, as desired.

Subcase 2: N16(L
′) ≥ 2 and cfoldimp

16 (L′) does not involve a thirding operation
In this case, we claim that L′′ = cfoldimp

16 (L′) is schedulable. Note that by Lemma 4.5, we have

D(L′′) ≥ D(L′)− 3

4
· 1
16

Putting this together with D(L′) ≥ D(L)− 1
16 we have

D(L′′) ≥ D(L)− 7

4
· 1
16
≥ −7

4
· 1
16

+

∞∑
i=0

1

2i + 1

Recall our D′(A) definition from Lemma 3.4 as

D′(A) =

n∑
i=1

{
1/ai if ai ≤ 8,

1/(ai − 1) if a1 > 8.

Note that there are a finite number of integer instances A with maximum m satisfying

• m ≤ 16

• D(A ≤ 8) > 31
30

• D′(A) ≥ − 7
4 ·

1
16 +

∑9
i=0

1
2i+1

• D′(A⊖m) < − 7
4 ·

1
16 +

∑9
i=0

1
2i+1
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We have enumerated and found a solution to all possible A satisfying the four conditions above.
Then, L′′′, which is created by taking the ceiling of every element of L′′ and removing the maximum until it

satisfies the last condition, is schedulable, so by the monotonicity property, L′′ is schedulable as well.
Note that the D′ function accounts for the density change due to taking ceilings, and we only need to do

1/(ai − 1) for a > 8 because if no thirding occurs then every element generated by cfoldimp
16 (L′) is greater than 8.

Since L′′ is schedulable, by Lemma 4.4, L′ is schedulable, as desired.

Subcase 3: N16(L
′) ≥ 2 and cfoldimp

16 (L′) involves a thirding operation
In this case, we claim that a slight modification of cfoldimp

16 (L′) is schedulable. In particular, since a thirding
operation occurred and the while loop in line 5 iterates once, with at most one thirding operation per iteration,
there is a unique element v generated by the thirding.

We claim that L′′ = (cfoldimp
16 (L′)⊖ v)⊔ (3v, 3v, 3v) is schedulable. Note that we have essentially reversed the

thirding operation, and if L′′ is schedulable, then L′ is schedulable because the combined execution of lines 9 and
10 and our reversal replaces (m1,m2) with (m3,m3), preserving unschedulability, and the rest of our operations
also preserve unschedulability, as discussed in Lemma 4.4. In addition, by Lemma 4.5 we have

D(L′′) = D(cfoldimp
16 (L′)) ≥ D(L′)− 3

4
· 1
16
≥ D(A)− 1

16
− 3

4
· 1
16
≥ −7

4
· 1
64

+

∞∑
i=0

1

2i + 1

Note that there are a finite number of integer instances A with top 4 maximum elements m1 ≥ m2 ≥ m3 ≥ m4

satisfying

• m1 = m2 = m3

• 17 ≤ m1 ≤ 22

• m4 ≤ 16

• D(A ≤ 8) > 31
30

• D′(A) ≥ − 7
4 ·

1
16 +

∑9
i=0

1
2i+1

• D′(A⊖m4) < − 7
4 ·

1
16 +

∑9
i=0

1
2i+1

We have enumerated and found a solution to all possible A satisfying the six conditions above. Then, L′′′,
which is created by taking the ceiling of every element of L′′ and removing the m4 element (maximum under 17)
until it satisfies the last condition, is schedulable, so by the monotonicity property, L′′ is schedulable as well. As
discussed previously, this implies L′ is schedulable, as desired.

The three subcases above exhaust all possibilities, so this proves that L′ is schedulable in any subcase. By
the contrapositive of Lemma 3.2, this means L is schedulable, as desired.

Case 5: E = 16
D(W ≤ 16) = 1

2 + 1
3 + 1

5 + 1
9 = 103

90 , so D(L ≤ 16) > 103
90 .

We claim that L′ = L ≤ 16 is schedulable. Note that every element of L′ is an integer and elements are no
greater than 16.

Note that there are a finite number of integer instances A with maximum m satisfying

• m ≤ 16

• D(A ≤ 16) > 103
90

• D(A⊖m) ≤ 103
90

We have enumerated and found a solution to all possible A satisfying the 3 conditions above. This means that
L′ is schedulable because we already know that it satisfies the first two conditions so we can remove the maximum
element until it satisfies the third condition, resulting in schedulability, and by the monotonicity property this
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means L′ is schedulable as well. Again applying the monotonicity property, this means L is schedulable, as
desired.

Case 6: E = 32
D(W ≤ 32) = 1

2 + 1
3 + 1

5 + 1
9 + 1

17 = 1841
1530 , so D(L ≤ 32) > 1841

1530 . We claim that L′ = L ≤ 32 is schedulable.
To prove this, we will show that L′′ = cfoldimp

16 (L′) is schedulable. Note that by Lemma 4.5,

D(L′′) ≥ D(L′)− 3

4
· 1
16

>
1841

1530
− 3

4
· 1
16

Now, we identify the appropriate modified density function for computer analysis in this case, associated with
taking the ceiling of every element of L′′. We first account for the thirding operation.

Note that it is not possible for any generated elements to be less than 5. In the range (5, 6), every generated
element must be at least 17

3 (since m1,m2,m3 > 16, and we divide by 3). In the range (6, 7), every generated
element must be at least 19

3 , since we start with integers, so m3 cannot be strictly between 18 and 19. No elements
can be generated in the range (7, 8) because m3 cannot be strictly between 21 and 22, and the thirding operation
only occurs if m3 ≤ 4

3 · 16 ≈ 21.33. In addition, for the halving operation, L′ is composed entirely of integers, so
the elements of L′′ must all be half-integer (if not an integer). In other words, for every a such that 8 ≤ a ≤ 15,
the minimum possible element generated in the range (a, a + 1) is a + 1

2 . Therefore, the appropriate density
function is

Dmod(A) =

n∑
i=1



1/ai if ai ≤ 5,

3/17 if ai = 6,

3/19 if ai = 7,

1/8 if ai = 8,

2/(2ai − 1) if a1 > 8.

Note that there are only a finite number of integer pinwheel instances A satisfying the following conditions,
where we denote the maximum element of A as m:

• m ≤ 16

• Dmod(A) > 1841
1530 −

3
4 ·

1
16

• Dmod(A⊖m) ≤ 1841
1530 −

3
4 ·

1
16

We have enumerated and found a solution to all possible A satisfying the three conditions above. Then L′′′,
which is created by taking the ceiling of every element of L′′ and removing the maximum until the last condition is
satisfied, is schedulable. By Lemma 4.4, this means L′ is schedulable. Again applying the monotonicity property,
this means L is schedulable, as desired.

Case 7: E ≥ 64
By the structure of W , we have that

D(W ≤ E) =
1

2
+

1

3
+

1

5
+ · · ·+ 1

E/2 + 1
=

log2(E)−1∑
i=0

1

2i + 1

We claim that L′ = L ≤ E is schedulable. Note that

D(L′) = D(L ≤ E) >

log2(E)−1∑
i=0

1

2i + 1

We proceed with casework. Consider the execution of the last line of the while loop on line 5 of the algorithm
for cfoldimp

16 (L′). The value of n calculated on the last iteration is either even or odd. In the case where it is odd,
we further subdivide into whether a thirding operation occurs on the last step or not.
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Subcase 1: n is even
In this case, we claim that L′′ = cfoldimp

16 (L′) is schedulable. Note that by the iterative nature of the algorithm,

cfoldimp
16 (L′) = cfoldimp

16 ((cfoldimp
32 (L′)))

We will use the second formulation to explore the density of L′′. In particular, applying Lemma 4.5, and
recalling that n is even, we have

D(L′′) = D(cfoldimp
16 ((cfoldimp

32 (L′)))) ≥ D(cfoldimp
32 (L′))− 1

2
· 1
16

Applying Lemma 4.6, we have

D(cfoldimp
32 (L′)) ≥ D(L′)−

1+log2(θ1/32)∑
m=1

3

4θm

Since the maximum of L′ is E, and NE/2(L
′) > 0, θ1 = E/2. Plugging this in, we have

D(L′)−
1+log2(θ1/32)∑

m=1

3

4θm
>

log2(E)−1∑
i=0

1

2i + 1
−

log2(E)−5∑
m=1

3

4θm

Putting everything together, we have

D(L′′) > −1

2
· 1
16

+

log2(E)−1∑
i=0

1

2i + 1
−

log2(E)−5∑
m=1

3

4θm

= − 1

32
+

1

2
+

1

3
+

1

5
+

1

9
+

1

17
+

log2(E)−1∑
i=5

1

2i + 1
−

log2(E)−5∑
m=1

3

4θm

Seeing that the two sums have the sum number of terms and that the last value of θ (i.e., θlog2(E)−5) for
cfoldimp

32 (L′) is 32, we have

− 1

32
+

1

2
+

1

3
+

1

5
+

1

9
+

1

17
+

log2(E)−1∑
i=5

1

2i + 1
−

log2(E)−5∑
m=1

3

4θm
=

28691

24480
+

log2(E)−1∑
i=5

(
1

2i + 1
− 3

4
· 1
2i

)
Since E ≥ 64, log2(E) − 1 ≥ log2(64) − 1 = 6 − 1 = 5. In addition, we have previously shown that if i ≥ 2,

the summand is positive:

1

2i + 1
− 3

4
· 1
2i

=
1

4
· 1
2i

+
1

2i + 1
− 1

2i
=

1

4
· 1
2i
− 1

2i + 1
· 1
2i

=
1

2i
·
(
1

4
− 1

2i + 1

)
> 0

Therefore,
log2(E)−1∑

i=5

(
1

2i + 1
− 3

4
· 1
2i

)
≥ 1

25 + 1
− 3

4
· 1
25

=
1

33
− 3

4
· 1
32

=
29

4224

Putting everything together, we have

D(L′′) >
28691

24480
+

29

4224
=

1269799

1077120

Note that there are a finite number of integer instances A with maximum denoted as m satisfying

• m ≤ 16

• D′(A) > 1269799
1077120
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• D′(A⊖m) ≤ 1269799
1077120

We have enumerated and found a solution to all possible A satisfying the three conditions above. Then, L′′′,
which is created by taking the ceiling of every element of L′′ and removing the maximum element until it satisfies
the last condition, is schedulable, so by the monotonicity property, L′′ is schedulable as well.

By Lemma 4.4, this means L′ is schedulable as well, as desired.

Subcase 2: n is odd and no thirding operation occurs on the last iteration
In this case, we claim that L′′ = cfoldimp

16 (L′) is schedulable. Applying Lemma 4.6, we have

D(cfoldimp
16 (L′)) ≥ D(L′)−

1+log2(θ1/16)∑
m=1

3

4θm

Since the maximum of L′ is E, and NE/2(L
′) > 0, θ1 = E/2. Plugging this in, we have

D(L′)−
1+log2(θ1/16)∑

m=1

3

4θm
>

log2(E)−1∑
i=0

1

2i + 1
−

log2(E)−4∑
m=1

3

4θm

=
1

2
+

1

3
+

1

5
+

1

9
+

log2(E)−1∑
i=4

1

2i + 1
−

log2(E)−4∑
m=1

3

4θm

As we have done in subcase 1, we know that

log2(E)−1∑
i=4

1

2i + 1
−

log2(E)−4∑
m=1

3

4θm
=

log2(E)−1∑
i=4

(
1

2i + 1
− 3

4
· 1
2i

)
Since E ≥ 64, log2(E) − 1 ≥ log2(64) − 1 = 6 − 1 = 5. In addition, we have previously shown that if i ≥ 2,

the summand is positive. Therefore,

log2(E)−1∑
i=4

(
1

2i + 1
− 3

4
· 1
2i

)
≥

5∑
i=4

(
1

2i + 1
− 3

4
· 1
2i

)
=

(
1

17
− 3

4
· 1
16

)
+

(
1

33
− 3

4
· 1
32

)
Putting everything together, we have

D(L′′) >
1

2
+

1

3
+

1

5
+

1

9
+

(
1

17
− 3

4
· 1
16

)
+

(
1

33
− 3

4
· 1
32

)
=

1252969

1077120

Let us now define a generalized notion of the D′ function in the following way:

Dc(A) =

n∑
i=1

{
1/ai if ai ≤ c,

1/(ai − 1) if a1 > c.

We will use this new function to make use of the following observation: there can be at most one element
generated by cfoldimp

16 (L′) that is less than 10. This is because no thirding operation occurs, so either n < 3
(where n denotes the value of n at the last iteration) in which case there can be only one generated element at
all, or m3 ≥ 4

3 · 16 ≈ 21.33, in which case there are at most two elements less than 20, and elements are halved so
there can be at most one element less than 10. We will now formulate the integer conditions to account for this
improvement:

There are a finite number of integer instances A with maximum denoted as m satisfying

• m ≤ 16

• If A contains a 9, D10(A) > 1252969
1077120 −

1
72 and D10(A⊖m) ≤ 1252969

1077120 −
1
72
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• Else if A contains a 10, D10(A) > 1252969
1077120 −

1
90 and D10(A⊖m) ≤ 1252969

1077120 −
1
90

• Else, D10(A) > 1252969
1077120 and D10(A⊖m) ≤ 1252969

1077120

We have enumerated and found a solution to all possible A satisfying the three conditions above. Then, we
claim that L′′′, which is created by taking the ceiling of every element of L′′ and removing the maximum element
until it satisfies the last condition, is schedulable. Note that if L′′′ contains a 9, the value in L′′ it corresponds
to could be arbitrarily close to 8 (but only one such 9 could, as discussed previously), so the density of L′′ could
exceed that of D(L′′′) by as much as 1

8 −
1
9 = 1

72 . If L′′′ instead contains a 10, the corresponding parameter is
1
9 −

1
10 = 1

90 . If L′′′ contains both, the 1
72 parameter is still appropriate since at most one 9 or 10 can be generated

(i.e., subject to modified density). Now, by the monotonicity property, L′′ is schedulable. By Lemma 4.4, this
means L′ is schedulable as well, as desired.

Subcase 3:
As in Case 4, Subcase 3, we claim that a slight modification of cfoldimp

16 (L′) is schedulable. In particular, since
a thirding operation occurred and the while loop in line 5 iterates once, with at most one thirding operation per
iteration, there is a unique element v generated by the thirding. We claim that L′′ = (cfoldimp

16 (L′)⊖v)⊔(3v, 3v, 3v)
is schedulable.

Note that we have essentially reversed the thirding operation, and if L′′ is schedulable, then L′ is schedulable
because the combined execution of lines 9 and 10 and our reversal replaces (m1,m2) with (m3,m3), preserving
unschedulability, and the rest of our operations also preserve unschedulability, as discussed in Lemma 4.4. We
can apply all the same steps as in Subcase 2 to derive

D(cfoldimp
16 (A)) >

1252969

1077120

In addition, 1
v = 1

3v + 1
3v + 1

3v so

D(L′′) = D((cfoldimp
16 (L′)⊖ v) ⊔ (3v, 3v, 3v)) = D(cfoldimp

16 (L′)) >
1252969

1077120

Furthermore, note that because 3v is the third smallest element in the range (16, 32] are thirded (not halved),
every generated element is greater than 3v/2. Note that there are a finite number of integer instances A with top
4 maximum elements m1 ≥ m2 ≥ m3 ≥ m4 satisfying

• m1 = m2 = m3

• 17 ≤ m1 ≤ 22

• m4 ≤ 16

• If m1 = 17 or m1 = 18, D8(A) > 1252969
1077120 and D8(A⊖m4) ≤ 1252969

1077120

• If m1 = 19 or m1 = 20, D9(A) > 1252969
1077120 and D9(A⊖m4) ≤ 1252969

1077120

• If m1 = 21 or m1 = 22, D10(A) > 1252969
1077120 and D10(A⊖m4) ≤ 1252969

1077120

We have enumerated and found a solution to all possible A satisfying the conditions above. Then, we claim
that L′′′, which is created by taking the ceiling of every element of L′′ and removing the maximum element
(less than 17) until it satisfies the last condition, is schedulable. D8(A) = D′(A) is the default modified density
function. We can use D9 if m1 is 19 or 20 because the value that we take the ceiling of must be greater than
18, so the generated elements must be greater than 3v/2 ≥ 9 similarly, we can use D10 if m1 is 21 or 22 because
it corresponds to the rest of the elements of L′′ being greater than 20. By the monotonicity property, L′′ is
schedulable. Now, by Lemma 4.4, we have that L′ is schedulable as desired.

These subcases exhaust all possibilities, so we have proven that L′ is schedulable in any case. By the
monotonicity property, this means that L is schedulable as well, as desired.

This completes the analysis of our 7 cases, and E is guaranteed to exist, so we have exhausted all possible
cases, completing the proof.
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C Omitted Proofs in Section 5.

C.1 Proof of Lemma 5.1.

Proof. Since D(A) > 1− 1
ab2 , by the Axiom of Archimedes, there exists n ∈ N such that D(A) ≥ 1− 1

ab2 +
1
n .

Suppose, for the sake of contradiction, that there exists an instance A satisfying the conditions of the lemma that
is schedulable. Then, there is a valid scheduling of jobs, which we refer to below.

Suppose, for the sake of contradiction, there exists k ∈ N such that both jobs 1 and 2 are arithmetically
scheduled on every day between abk and ab(k + 1) − 1 inclusive. Then, there exists c, d ∈ {0, 1, . . . , a − 1} such
that job a is scheduled on days abk + c, abk + c + a, abk + c + 2a, . . . and job b is scheduled on days abk + d,
abk+ d+ b, abk+ d+2b, . . . . Then, since gcd(a, b) = 1, abk ≡ 0 (mod ab), and ab(k+1)− 1 ≡ ab− 1 (mod ab),
by the Chinese Remainder Theorem, there exists a unique x ∈ {abk, . . . , ab(k + 1)− 1} such that x ≡ c (mod a)
and x ≡ d (mod b). On day x, both jobs 1 and 2 are thus scheduled, but this violates the pinwheel constraint of
one job per day, a contradiction.

If job 1 is not scheduled arithmetically, then it must be that there are two consecutive schedulings with strictly
less than a gap of a between them, and similarly a gap less than b for job 2. For such a gap strictly smaller than
the period length, we refer to it as a “left-push”, with appropriate multiplicity (e.g., a gap of a−2 for job 1 counts
as 2 left pushes). We have already proven that for every k, there is a left-push in the interval [abk, ab(k+1)− 1].

Let P = n
∏k

i=1 ai, and consider the scheduling of jobs 1 and 2 between day 1 and day P . Partitioning these
P days into P

ab groups of ab contiguous days each, there are at least P
ab left-pushes. There are a minimum of P

b
schedulings of job 1 in this interval, and for every a left-pushes of job 1 there is an additional scheduling needed.
Similarly, job 2 is scheduled a minimum of P

b times with an additional scheduling per b left-pushes of job 2. Our
formula for the total number of schedulings of jobs 1 and 2 is then

P

a
+

P

b
+
⌊x
a

⌋
+
⌊x
b

⌋
≥ P

a
+

P

b
+

x

a
− 1 +

y

b
− 1 =

P

a
+

P

b
+

bx+ ay

ab
− 2

where x is the number of left-pushes for job 1 and y is the number of left-pushes for job 2. Then, x+ y ≥ P
ab ,

so
P

a
+

P

b
+

bx+ ay

ab
− 2 ≥ P

a
+

P

b
+

ax+ ay

ab
− 2 =

P

a
+

P

b
+

P

ab2
− 2

Now, since P is a multiple of every ai, for every i ∈ [k] \ {1, 2}, there are at least P
ai

schedulings of job i. The
overall sum is

k∑
i=3

P

ai
= −P

a
− P

b
+

k∑
i=1

P

ai
= D(A)P − P

a
− P

b

where we have used the definition of density. Since the total number of schedulings of all jobs is the number of
schedulings for jobs 1 and 2 combined with that of the rest, using our generated formulas, it is

P

a
+

P

b
+

P

ab2
− 2 +D(A)P − P

a
− P

b
=

P

ab2
− 2 +D(A)P

Recall that D(A) ≥ 1− 1
ab2 + 1

n so

P

ab2
− 2 +D(A)P ≥ P

ab2
− 2 + P ·

(
1− 1

ab2
+

1

n

)
= P +

P

n
− 2 > P

where we have used the fact that P > 2n because P is a multiple of abn, and both a and b are at least 2. We
have proven that the total number of jobs scheduled is greater than P , but the number of available days is P , so
by the Pigeonhole Principle, there must be at least one day for which two jobs are scheduled. This violates the
pinwheel constraint, a contradiction. This completes the proof.

C.2 Proof of Lemma 5.2.

Proof. We have verified programmatically that in any interval of length 24, there are at least two left-pushes
(as defined in the lemma).
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We can now prove the bound in essentially the same way as the lemma. Suppose, for the sake of contradiction,
that there is some A with (a1, a2, a3, a4) = (3, 6, 6, 8) and D(A) > 95

96 that is schedulable. Then, there is a valid
schedule. By the Axiom of Archimedes, there exists n ∈ N such that D(A) ≥ 95

96 + 1
n .

Let P = n
∏k

i=1 ai, and consider the scheduling of jobs 1, 2, 3, and 4 between day 1 and day P . Partitioning
these P days into P

24 groups of 24 contiguous days each, there are at least 2 · P
24 left-pushes. Our formula for the

total number of schedulings of job 1, 2, 3, and 4 is

P

3
+

P

6
+

P

6
+

P

8
+
⌊w
3

⌋
+
⌊x
6

⌋
+
⌊y
6

⌋
+
⌊z
8

⌋
≥ P

3
+

P

6
+

P

6
+

P

8
+

w

3
− 1 +

x

6
− 1 +

y

6
− 1 +

z

8
− 1

=
P

3
+

P

6
+

P

6
+

P

8
+

8w + 4x+ 4y + 3z

24
− 4

where w is the number of left-pushes for job 1, x is the number of left-pushes for job 2, y is the number of
left-pushes of job 3 and z is the number of left-pushes of job 4. Then, w + x+ y + z ≥ P

12 , so

P

3
+

P

6
+

P

6
+

P

8
+

8w + 4x+ 4y + 3z

24
− 4 ≥ P

3
+

P

6
+

P

6
+

P

8
+

3w + 3x+ 3y + 3z

24
− 4

=
P

3
+

P

6
+

P

6
+

P

8
+

P

96
− 4

Now, since P is a multiple of every ai, for every i ∈ [k] \ {1, 2, 3, 4}, there are at least P
ai

schedulings of job i.
The overall sum is

k∑
i=5

P

ai
= −

(
P

3
+

P

6
+

P

6
+

P

8

)
+

k∑
i=1

P

ai
= D(A)P −

(
P

3
+

P

6
+

P

6
+

P

8

)
where we have used the definition of density. Since the total number of schedulings of all jobs is the number of
schedulings for jobs 1 and 2 combined with that of the rest, using our generated formulas, it is

P

3
+

P

6
+

P

6
+

P

8
+

P

96
− 4 +D(A)P −

(
P

3
+

P

6
+

P

6
+

P

8

)
=

P

96
− 4 +D(A)P

Recall that D(A) ≥ 95
96 + 1

n so

P

96
− 4 +D(A)P ≥ P

96
− 4 + P ·

(
95

96
+

1

n

)
= P +

P

n
− 4 > P

where we have used the fact that P > 4n because P is a multiple of n · 3 · 6 · 6 · 8. We have proven that the
total number of jobs scheduled is greater than P , but the number of available days is P , so by the Pigeonhole
Principle, there must be at least one day for which two jobs are scheduled. This violates the pinwheel constraint,
a contradiction. This completes the proof.

C.3 Proof of Lemma 5.3.

Proof. Each element of B represents some set of elements in the original instance A. In addition, this
represents a partition of the elements of A. To be more concrete, suppose for job i with period Bi there are
corresponding jobs in A with periods in A of A′ = (Ai1, Ai2, . . . , Aim).

We first prove the following as a sublemma: For all i ∈ [k′], we can simultaneously pack jobs of periods
⌊ 97 ·Ai1⌋, ⌊ 97 ·Ai2⌋, . . . , ⌊ 97 ·Aim⌋ in the spaces allocated to a job of period ⌊ 97 ·Bi⌋.

Consider a slight variant on the fold operation, pfold′, in which, rather than running until every element is at
most θ, the operation stops when a single element remains. Under this definition, pfold′(A′) = Bi. In addition,
the schedulability of pfold′(A′) still implies the schedulability of A′. Now, let us round down each A period down
to the nearest period of the form Bi · 2v for v ∈ N. Formally, let

Di = (f(Ai1), f(Ai2), . . . , f(Aim)) where f(x) = Bi · 2⌊log2(x/Bi)⌋
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Let us define d = pfold′(D). Since the original sequence D is composed entirely of numbers of the form Bi ·2v
and at each step of the fold operation we either introduce half of an existing number or decrease to the next
lowest number, by induction, d = Bi · 2v0 for some v0 ∈ Z. Now, note that d ≤ Bi because every element of D is
less than the corresponding element of A. In addition, for any pinwheel instance A and any α ∈ R+,

pfold′(αA) = α · pfold′(A)

This is because the initial periods of αA are α times greater than the corresponding periods in A, and for
every stage in the fold operation, this relationship is maintained (the same halving or decrease operation occurs
up to scale factors). Let us define r = min

j∈[m]

f(Aij)
Aij

. Then, r exists because there are a finite number of possibilities

for j and for every j, f(Aij)
Aij

> 1
2 because ⌊log2(x/Bi)⌋ > log2(x/Bi)− 1. This means r > 1

2 . Therefore,

d = pfold′(Di) ≥ pfold′(rA′) = rpfold′(A′) >
1

2
·Bi

Since d ≤ Bi, d > 1
2 ·Bi and d

Bi
= 2v0 for some v0 ∈ Z, it must be that d = Bi. Now, let us define

c = min
j∈[m]

⌊ 97 ·Dij⌋
9
7 ·Dij

We claim that

c ≥
⌊ 97 ·Bi⌋
9
7 ·Bi

This is true because every Dij is a multiple of Bi and for every n ∈ N and x ∈ R+, ⌊nx⌋ ≥ n⌊x⌋, so

⌊ 97 ·Dij⌋
9
7 ·Dij

=
⌊n · 97 ·Bij⌋
9
7 · n ·Bij

≥
n⌊ 97 ·Bij⌋
9
7 · n ·Bij

=
⌊ 97 ·Bij⌋
9
7 ·Bij

This means that

pfold′
(⌊

9

7
·Di1

⌋
,

⌊
9

7
·Di2

⌋
, . . . ,

⌊
9

7
·Dim

⌋)
≥
⌊
9

7
·Bi

⌋
Now, every element of D is less than the corresponding element of Af , so

pfold′
(⌊

9

7
·Af1

⌋
,

⌊
9

7
·Af2

⌋
, . . . ,

⌊
9

7
·Afm

⌋)
≥
⌊
9

7
·Bi

⌋
This proves the sublemma. Now, for the overall proof, since the jobs in A can be partitioned based on which

job in B they are mapped to, and space is allocated for all jobs in C of period ⌊ 97 · Bi⌋ for i ∈ [k′], appealing to
the lemma, every job in A′ can be scheduled, meaning A′ is schedulable, as desired.
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